
A New Spatial Fuzzy C-Means for Spatial Clustering 
Yingdi Guo, Kunhong Liu*, Qingqiang Wu, Qingqi Hong, Haiying Zhang 

Software Department of Software School 

Xiamen University 

Xiamen, Fujian Province, China 

578078128@qq.com; lkhqz@163.com; wuqq@xmu.edu.cn; hongqq@xmu.edu.cn; zhang2002@xmu.edu.cn 

 

Abstract: Fuzzy C-means is a widely used clustering algorithm in data mining. Since traditional fuzzy 
C-means algorithms do not take spatial information into consideration, they often can’t effectively explore 
geographical data information. So in this paper, we design a Spatial Distance Weighted Fuzzy C-Means 
algorithm, named as SDWFCM, to deal with this problem. This algorithm can fully use spatial features to 
assign samples to different clusters, and it only needs to calculate the memberships one time, which 
reduces the running time greatly compared with other spatial fuzzy C-means algorithms. In addition, 
we also propose two new criteria, named as DESC and PESC, for evaluating spatial clustering results by 
measuring spatial and regular information separately. The experiments are carried out based on real 
petroleum geology data and artificial data, and the results show that SDWFCM can achieve better 
performance compared with traditional clustering method, and our spatial cluster indices can provide the 
assessment of clusters by taking spatial structure into consideration effectively.  

Key-Words: spatial clustering, fuzzy c-means, evaluation criteria. 

1.  Introduction 

Spatial clustering is an important research field of 
data mining, and it has been widely used in 
geography, geology, remote sensing, mapping and 
other disciplines. When clustering spatial data, each 
sample is divided into two parts: the spatial 
information and general properties. But in most 
cases, in the task of clustering spatial data, 
researchers mainly consider general attributes, with 
leaving the spatial information somehow ignored. 
However, for geological data, it is obvious that 
simply considering regular attributes can not 
effectively reflect the characteristics of sample data. 
So some studies have been done to combine the 
spatial and non-spatial attributes. For example, X.Y. 
Li et al. proposed the space coordinate integration 

[1], and G.Q. Li et al. proposed a spatial 
clustering algorithm based on dual distance 
[2]. 

Traditional fuzzy C-means (FCM) 
algorithm has been used in different research 
fields. It allocates samples’ membership 
according their probability of belonging to a 
cluster. Because of its effectiveness, more and 
more methods are proposed to improve it. Fan 
et al [3] introduced Suppressed FCM 
algorithm. It increases speed of FCM by 
prizing the biggest membership value and 
suppressing the others. However, when 
membership values are close, simply 
rewarding the biggest membership value may 
not be reasonable. F. Zhao et al. [4] proposed 
optimal-selection based suppressed fuzzy 
c-means clustering algorithm with self-tuning 
non local spatial information. It constructs 
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gray level histogram firstly, and then an 
optimal-selection based suppressed strategy is 
applied to improve FCM, which makes a successful 
application on image segmentation. Zexuan Ji et al. 
added weighted image patch in FCM algorithm [5]. 
It replaces pixels with image patches as the basic unit 
of clustering, which can reduce the impact of noise 
and saving times. It works well on brain MR images. 
Krishna Kant Singh et al. [6] presented a neuro fuzzy 
clustering algorithm for classification of remote 
sensing images. Hongbao Cao et al. [7] proposed 
IAFCM algorithm used a new objective function 
with a different regulation term. And it appears to be 
more effective in controlling the shape of the gain 
field. It has been successfully applied to the 
classification of M-FISH images. M-FISH image is a 
combinatorial labeling technique that is developed 
for the analysis of human chromosomes. S. Krinidis 
and V. Chatzis [8] proposed a robust FCM 
framework for image clustering, named as FLICM. 
It changes the conventional FCM objective function 
by adding local spatial and gray level information. 
M.G. Gong et al. [9] proposed KWFLICM based on 
FLICM, which adds a trade-off weighted fuzzy 
factor to the objective function and kernel method. 
The adaptive trade-off weighted fuzzy factor 
depends on the local spatial constraint and local 
gray-level constraint. Hesam Izakian et al. [10] 
revisit and augment the FCM to make it applicable 
to spatiotemporal data by discussing an augmented 
distance function. Some researchers also applied 
FCM to combine with evolutionary based 
algorithms to real world problems [11]. The survey 
of FCM based methods are given in [12]. 

However, traditional FCM algorithms are not 
proper for dealing with spatial data because such 
algorithms can’t separate spatial features with 
general features. Based on this consideration, in 
recent years, many researchers have put forward 
some schemes to solve this problem. For example, 
C.P. Hu et al. [13] and Chuang et al [14] proposed 
two similar Spatial Fuzzy C-means algorithms, 

which named as SFCM and sFCMpq, 
respectively. These algorithms use two 
different spatial functions for smoothing 
membership value, and use parameters to 
balance the importance of the normal 
membership and the spatial function's value. 
Y.Y. Wang et al. [15] used some methods to 
further improve sFCMpq. However, the 
above methods need calculate the 
membership degree twice, which is quite 
time-consuming when dealing with 
large-scale problems. And the process of 
smoothing membership degree would tend to 
unavoidably blur the characters of samples.  

This paper presents a new Spatial 
Distance Weighted Fuzzy C-Means algorithm, 
named as SDWFCM. It can directly calculate 
weighted distance, and the memberships are 
only calculated once. So it is much faster than 
other methods in application. In addition, to 
evaluate the effectiveness of algorithms, we 
also propose two new measurements for 
spatial clustering. The experimental results 
show that SDWFCM can be more efficient 
and effective than other methods, and the 
evaluation criterion is qualified to be new 
indicators for the comparisons of spatial 
clustering algorithms. 

2.  Method 

2.1 Spatial distance weighted based fuzzy 
C-means 

Traditional FCM was proposed by 
Bezdek J.C [13]. It divides data set 

{ }1 2, , , nX x x x=   into c  fuzzy clusters by 

minimizing the cost function, defined as 
formula (1): 
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Where iv  represents the center of cluster i , d
ix R∈ . 

[ ]ikU u=  is a membership matrix of dataset, and it 

satisfied formula (2): 
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Here, [1, ]m∈ ∞ , and m is a weighted index used to 

defines the degree of fuzzy classification. When m=1, 
the method degradation to the hard clustering. And 
usually we set m=2. 
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FCM algorithm iteratively computes the cluster 
centers and the corresponding memberships 
according to formula (3) and (4), until the clustering 
centers vary within a pre-defined range or the 
maximum number of iteration reaches. 

 
2.2 SFCM 

Although FCM works well in many real-world 
applications, it can’t be applied to deal with spatial 
data directly, because there are two types of features 
in spatial clustering problems. The first type of 
features is regular feature, which refers to ordinary 
property of non-spatial data. Such typical features 
are age, income, and et al. The other type of 
features is directly referenced to a location of the 
earth, such as Latitude and Longitude. They can be 
represented by coordinates or vectors. In many 
applications, researchers may ignore the specialty of 
spatial features, and just use traditional clustering 
algorithms by regarding spatial features as regular 

features. However, it may unavoidably lead 
to the loss of some characters of samples and 
the spatial structures among samples. To 
solve this problem, some researchers devote 
to the design of spatial clustering algorithms. 
For example, C.P. Hu et al [9] proposed 
SFCM by defining a spatial function as 
follow: 

( )k j

ij ik
s NB s

h u
∈

= ∑         (5) 

where NB(Sj) represents the neighborhood 
object set of a spatial object Sj. It is 
instinctive that when most of Sj’s 
neighborhood objects belong to the same 
cluster, the probability of Sj belonging to this 
cluster would be high. Therefore, the 
algorithm made the following modifications 
to the membership matrix: 

'

1

p q
ij ij

ij c
p q
kj kj

i

u h
u

u h
=

=

∑
           (6) 

where p and q act as weighted parameters, 

and both are used to control the weight of iju  

and ijh . When p=1 and q=0, SFCM degrades 

into the traditional fuzzy C-means algorithm.  

Although SFCM can obtain more 
reasonable results compared with traditional 
FCM, there are still some shortcomings in 
this algorithm. Firstly, the value of p and q 
can’t define directly, and no relationship can 
be found between p and q. So in practical 
applications, it’s hard to know how to set p 
and q. And the worse of all, there is no way 
to find out whether these two parameters 
should be increased or decreased when 
tuning the parameters of the algorithm. 
Secondly, because the memberships need to 
be calculated twice, the speed of SFCM is 
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very slow in case of large scale datasets. So our 
algorithm aims to tackle these problems. 

 
 

2.3 SDWFCM 

A Spatial Distance Weighted based FCM 
(SDWFCM) is proposed to solve the problems 
mentioned above. The principle of this algorithm is 
described as follows. 

First of all, SDWFCM and traditional FCM are 
consistent in computing the center of cluster, as 
shown in the following formula: 
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Where the ( )t
iv  represents the i-th cluster 

center after the t-th iteration, iku  indicates the 

membership of the k-th sample belonging to the i-th 
cluster. 

Before calculating the distance between sample 
and the cluster center, we define a spatial distance 
weighted function as follows: 
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This function is employed to modify distances 
as follows: 

(1 )ij ij ij ijD d f dλ λ= − ⋅ ⋅ + ⋅   (9) 

whereλ  is the weighted coefficient, which ranges 

within (0, 1). And ijd  is the original Euclidean 

distance of the sample to the cluster center. ijD  is 

a weighted distance that sample to the cluster 
center, and it is deployed in the process of 
reassigning memberships. 
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 In this way, the weight of spatial features 
is fully controlled by λ . When λ is set 
close to 1, the spatial information will play 
an important role in the final result. At the 
same time, the membership only needs to be 
calculated once, leading to save much more 
time compared with SFCM. The algorithm 
flow is described as below. 

Let U be the membership matrix, and its 
elements represent the membership of k-th 
sample belonging to i-th cluster. Matrix D 
records the Euclidean distance of different 
samples to cluster centers, where dij 
represents Euclidean distance of the j-th 
sample to the i-th cluster center. They are 
calculated using ordinary feature, just like the 
standard clustering algorithms. V is the 
matrix of clustering center, and the elements 

of t
iv  represent the i-th cluster’s center after 

the t-th iteration. The work flow of 
SDWFCM is described as below. 
1. Initializing membership matrix U; 
2. Calculating the cluster center matrix V 

according to formula (7); 
3. Calculating the Euclidean distance 

matrix D based on regular features; 

4. Calculating weighted distance ijD  

according to formula (8) and (9); 
5. Calculating the new membership degree 

based on formula (10); 
6. If the number of iterations has reached 

the maximum run time, or the variance 
of cluster centers meets a criteria, the 
program stops; otherwise, it repeats step 
2-5.  
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3.  Evaluation index 

3.1 Current situation of clustering index 

External clustering evaluation is an effective way 
for the validity of clustering results, and effective 
criterion is key to fairly comparing the 
performances of different clustering algorithms or 
tuning parameters a clustering algorithm.  

Traditional clustering evaluation 
measurements mainly concern about distance 
between classes or within a class. For example, 
Dunn’s Index to calculate the ratio of minimum 
distance of samples in a same cluster and the 
maximum distance between clusters. 
Davies-Bouldin’s Index compute the average 
distance within clusters and the maximum distance 
between clusters. CS Index evaluates the cluster 

results in a similar way by considering 
distance [17]. But these indices only 
calculate the distance in regular feature sets. 
When evaluating spatial clustering results, 
such as geographic data, these evaluation 
measures are insufficient due to lacking of 
measures for spatial structure. Chunchun Hu 
et al. [18] proposed the IFV evaluation index 
for spatial fuzzy clustering, but the 
evaluation algorithm is of high computation 
complexity, and can’t reflect the spatial 
structure of geographic data. Q.L. Liu et al. 
[19] put forward a spatial clustering 
evaluation measurement based on field 
theory, but it is also time consuming. 

 
 

 

 

Fig. 1. Flowchart of DWSFCM algorithm 
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3.2 Two new clustering evaluation indices 

Two new evaluation criterions for clustering 
spatial data are proposed here: discrete 
evaluation for spatial clustering (DESC) and 
proximity evaluation for spatial clustering 
(PESC). 

1. DESC 
This criterion is designed by this assumption: a 
clustering algorithm should assign as much as 
possible geographically adjacent samples to a 
same cluster in the case that they are also 
neighbors in regular feature subspace.  

Let Blocki denote the i-th sets in which the 
geographically adjacent samples are assigned to 
the same cluster. It is called as the i-th spatially 
connected block. The samples in the set must be 
in a same cluster, and there is at least one sample 
in a set. The connected blocks form a bigger set, 
named as Block. Assume that the number of all 
the connected blocks is Nb for Clusterk in a set, 
containing all connected blocks belonging to 
cluster k. Let Cnk represents the number of 
samples belonging to k-th cluster. Let vi denote 
the number of samples in Blocki , or the size of 
the i-th collection. And Vi is the size of the i-th 
collection divided by the number of samples 
belonging to the k-th cluster, which can be 
described as: 

{ }i
i i k

k

vV Block Cluster
Cn

= ∈  (11) 

Let id  represent the average distance of all 

samples in the collection to the collection center 
for general attributes. The formula of Discrete 
Evaluation for Spatial Clustering can be 
described as follows: 

2

2
1

bN
i
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i i

Vf
d=

= ∑          (12) 

where N represents the total number of all 

samples in the sample. When the iv ’s value is 1, 

we let the id  be 1. From the formula, it can be 

found that the bigger size a connecting block is, 
the higher score it obtains. At the same time, if 
the average distance of samples in a connected 
block to the block center is greater, the score is 
lower. In addition, when the number of 

connected block is 1, the average distance of id  

is 0, which indicates an illegal situation. In such 

case, id  is simply set to 1. 

 

2. PESC 
This index show how close the samples in the 
same cluster are. It is defined as follows: 

Let Blocki denote the i-th sets in which the 
adjacent samples are belong to a same cluster. It 
is named as the i-th connected block. The 
samples in the set must be in the same cluster, 
and each sample has at least one adjacent sample 
within the set, or the set contains only one 
sample. Clusterk is a set, and it contains all 
connected blocks those belong to cluster k. Let 
Cnk represent the number of samples which 
belong to k-th cluster, and Bnk denote the 
number of blocks belonging to the k-th cluster. 
Let vi denote the number of samples in Blocki or 
the size of the collection, Vi is the size of the i-th 
collection divided by the number of samples 
belonging to k-th cluster, as shown in (13). 

{ }i
i i k

k

vV Block Cluster
Cn

= ∈  (13) 

The calculation formula of Proximity 
Evaluation for Spatial Clustering is: 

2
1

,
c
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In (14), Dij represents the spatial distance of 
the closest sample pair belonging to Blocki and 
Blockj, respectively, and dij represents the 
distance of two block centers for regular 
attributes. So the closer of connected blocks of 
the same cluster are, the higher the scores they 
obtain. And the more samples in the same 
connected block, the higher score. And it should 
be noted that if there is a large block in Clusteri 
with a great number of small blocks, it still gets 
a low score. 

 

4.  Experiments and analysis 

4.1 Real oil seismic exploration data  
We compare the performance of three different 
algorithms: K-means (with default parameter 
settings in Matlab toolbox), SFCM, and 
DWSFCM. The number of clusters is set to 7 in 
all experiments. The visualized results for three 
algorithms are shown as Fig. 2- Fig. 4. 

Comparing the clustering results, we can see 
that the results are all filled with small segments, 
but the results produced by Kmeans are shown 
to be the most scattered. Too many trivial 
segments indicate that clustering algorithm fails 
to exploit the spatial information reasonably and 
sufficiently. The results produced by SFCM and 
DWSFCM are much better as shown in Fig. 2 
and 3. In addition, it is necessary to compare the 
evaluation index achieved by these algorithms. 
And we use some evaluation indices, IIdx, 
CDVM, Dunn’s Index, DESC proposed in this 
paper to evaluate the results of clustering under 
different parameter. We don’t use PESC 
proposed in this paper because the scale of oil 
seismic exploration data is so huge that the task 
of finding the closest sample pair for blocks 
become a tough challenge. And we can’t obtain 
results in a reasonable time, so we have to ignore 
the PESC index in real data set. The results are 

shown in the Table 1. It should be noted that all 
results are unitless. 

For all indices listed in Table I, the bigger, 
the better. From Table I, we can observe that 
SFCM algorithm beats K-means in IIdx scores, 
but its CDVM and Dunn scores are worse than 
K-means. For DESC, when the SFCM parameter 
p value is higher, the results are better than 
K-means. But the SFCM algorithm’s parameters 
do not reflect what role the weigh of the spatial 
information plays in clustering. 

In contrast, DWSFCM’s parameter λ can 
directly reflect the importance of spatial 
information. When λ = 0.5, DWSFCM gets the 
best scores compared with other two methods in 
the first three indices. And when λ = 0.4, it gets 
the highest spatial index in DESC, and the value 
is much higher than those of K-means and 
SFCM with different parameter settings. The 
large score of DESC index shows that less noise 
and larger blocks in clustering results. When λ = 
0.5, its DESC score is also better than other 
algorithms. Thus, the DWSFCM algorithm can 
achieve better performance compared to 
traditional K-means and SFCM.  

The success of DWSFCM lies in that its 
parameters directly reflect the importance of 
spatial information. It can be found that, with the 
increase of λ, its results are getting better at first, 
and then get worse. So the proportion of spatial 
information can be neither blindly increased, nor 
ignored. When λ is close to 0.5, the results reach 
an optimal situation with treating the spatial 
information and attribute information equally. In 
such case, we can find that DWSFCM achieve 
the best performance.  
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Fig. 2.   K-Means results 

Fig. 3. SFCM results (p = 5, q = 2) 
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TABLE I   Results of different algorithms based on real world spatial data 

 IIdx CDVM Dunn DESC 
K-Means  0.0092252  0.5208984  0.0182718  53.9333421  
SFCM (p=5,q=2) 0.0137251  0.5192598  0.0076759  47.3330820  
SFCM (p=8,q=2) 0.0122435  0.5205313  0.0108863  53.0173389  
SFCM (p=10,q=2) 0.0114494  0.5205647  0.0123926  53.2904940  
SFCM (p=12,q=2) 0.0108670  0.5206423  0.0134363  55.8093210  
SFCM (p=26,q=2) 0.0098918  0.5208213  0.0160930  55.0747204  
DWSFCM (λ = 0.3) 0.0090212  0.5226890  0.0241802  70.4694010  
DWSFCM (λ = 0.4) 0.0103273  0.5224728  0.0186201  74.4526495  
DWSFCM (λ = 0.5) 0.0165571  0.5237769  0.0178778  55.5099774  
DWSFCM (λ = 0.6) 0.0130327  0.5219415  0.0109377  44.1307562  
DWSFCM (λ = 0.7) 0.0093480  0.5225258  0.0108132  59.3899967  

 

4.2 Artificial data 
In order to make the comparison of 

algorithms more clearly, we set up an artificial 
data. The artificial data has 10000 data points, 
these data points distributed evenly in the 100 * 
100 dot matrix. And Fig. 5 illustrates the original 
data by using each pixel to represent a sample in 

the corresponding spatial location. In the 
following experiments, the results are all 
illustrated in the same way. And it should be 
noted that these figures are unitless. In our 
experiments, each sample contains 4 attributes, 
produced according to the following rules. 

1) if the data points corresponding to the 
pixel as red, attribute 1 would be a 

Fig. 4. DWSFCM results (λ = 0.5) 
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random numbers 0.3 to 0.8, attribute 2 
would be a random number from 0.6 to 
0.9, attribute 3 would be a random 
numbers from 0.1 to 0.6, attribute 4 
would be a random numbers 0.4 to 0.9. 

 

 

 
2) if the data points corresponding to the 

pixel as yellow, attribute 1 would be a 
random numbers 0.0 to 0.7, attribute 2 
would be a random number from 0.4 to 
0.8, attribute 3 would be a random 
numbers from 0.2 to 0.5, attribute 4 
would be a random numbers 0.6 to 1.0. 

3) if the data points corresponding to the 
pixel as green, attribute 1 would be a 
random numbers 0.5 to 0.8, attribute 2 
would be a random number from 0.1 to 
0.8, attribute 3 would be a random 
numbers from 0.2 to 0.8, attribute 4 
would be a random numbers 0.2 to 0.7. 

4) if the data points corresponding to the 
pixel as blue, attribute 1 would be a 
random numbers 0.1 to 0.5, attribute 2 
would be a random number from 0.2 to 
0.6, attribute 3 would be a random 
numbers from 0.4 to 0.9, attribute 4 
would be a random numbers 0.1 to 0.5. 

In this way, an artificial data set is generated 
in size of 10000×4. The ideal clustering results 
should be able to produce the original artificial 
data source diagram. However, according to the 

artificial data set generating rule, some samples 
in the data set will become outliers. And 
effective clustering algorithms should reduce the 
effect of outliers. 

The corresponding clustering results of each 
algorithm are shown in Fg.6-Fig.8. From Fig. 6, 
we can see that although the K-means algorithm 
can correctly pick up samples in a same cluster 
and produce boundaries for different clusters 
clearly, it can not deal with noise, resulting with 
the clustering results spotted. And it is obvious 
that it can not get rid of the influence of random 
noise. 

Fig.7 shows that SFCM algorithm can 
produce better and clean results compared with 
those of K-means in general. And there is less 
noise. And DWSFCM has the less noise among 
all results, as shown in Fig. 8. 

We also use evaluation index to compare the 
algorithms with different parameters, as shown 
in Table II.  

All larger values in Table II indicate better 
performance. From this table, we can see that the 
DWSFCM algorithm performs better than the 
other two algorithms judged by both DESC 
index and Dunn index. According to PESC 
index, DWSFCM algorithm beats K-means, but 
its PESC index is slightly inferior to that of 
SFCM algorithm, which may reveal that for the 
spatial data, parameter settings are very 
important.  

On the other hand, because PESC is 
designed to measure the relationship between 
blocks in a same cluster, the results also indicate 
that the SFCM algorithm produce compact 
blocks in clusters when P is smaller. In all 
experiments, the performances of K-Means are 
relatively poor in considering both DESC index 
and PESC index. And Fig.6 also shows that its 
clustering results contain more noise.  

 
 

Fig. 5. The artificial data 

WSEAS TRANSACTIONS on COMPUTERS
Yingdi Guo, Kunhong Liu, Qingqiang Wu, 

Qingqi Hong, Haiying Zhang

E-ISSN: 2224-2872 378 Volume 14, 2015



TABLE II   Results of different algorithms based on artificial spatial data 
 

  IIdx CDVM Dunn DESC PESC 
K-Means 0.04140  0.39425  0.15854  4023.72  236.81  
SFCM (p=3,q=2) 0.05207  0.39195  0.14578  4062.48  431.01  
SFCM (p=5,q=2) 0.05426  0.39548  0.14707  5477.70  315.15  
SFCM (p=7,q=2) 0.05312  0.39608  0.14872  4948.03  328.03  
SFCM (p=11,q=2) 0.05037  0.39598  0.15126  4894.24  322.98  
SFCM (p=23,q=2) 0.04660  0.39551  0.15465  4205.57  248.14  
DWSFCM (λ = 0.3) 0.03220  0.39133  0.16172  9055.64  382.86  
DWSFCM (λ = 0.4) 0.03297  0.39059  0.16100  6986.30  293.14  
DWSFCM (λ = 0.5) 0.03404  0.38999  0.16064  6026.37  278.86  
DWSFCM (λ = 0.6) 0.03375  0.38883  0.15961  6044.38  284.35  
DWSFCM (λ = 0.7) 0.03367  0.38777  0.15885  5234.39  259.03  

 

 

 
 

 

 
 
 
 

 

 

 
 
Although DWSFCM algorithm is worse 

than the other two algorithms when taking IIDx 
and CDVM indices into consideration, by 
comparing results in Fig. 6-Fig. 8, it can still be 
found that the results of DWSFCM are better 
than other two algorithms. In our opinion, this 
observation shows that the traditional indices are 
not appropriate for evaluating spatial cluster 
algorithms due to the ignoring of spatial 
structure. On the contrary, clustering evaluation 
index proposed in this paper can reflect the 
character of spatial information more clearly. As 
a conclusion, spatial information should be taken 
into account in the design of measures for spatial 
data mining algorithms. 

Fig. 7.  SFCM results (p = 5, q = 2) 

Fig. 8.  DWSFCM results  (λ = 0.5) 

 

Fig. 6. K-Means results 
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5.  Conclusions 

In this paper, we propose a new fuzzy 
K-mean algorithm for clustering spatial data, 
named as DWSFCM. It can be applied to 
effectively deal with spatial features and regular 
features at the same time. To evaluate the results 
for spatial data, we also design two 
measurements, named as DESC and PESC. In 
our experiments, it is found that our method can 
usually achieve the best results compared with 
K-means and SFCM, and the indices we 
proposed can also help to give a new deep 
insight to spatial clustering results. 
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